Affiliation:
1. University of California, Los Angeles
2. USDA Forest Service
3. University of California, Berkeley
Abstract
We present a scalable end-to-end system for vision-based monitoring of natural environments, and illustrate its use for the analysis of avian nesting cycles. Our system enables automated analysis of thousands of images, where manual processing would be infeasible. We automate the analysis of raw imaging data using statistics that are tailored to the task of interest. These “features” are a representation to be fed to classifiers that exploit spatial and temporal consistencies. Our testbed can detect the presence or absence of a bird with an accuracy of 82%, count eggs with an accuracy of 84%, and detect the inception of the nesting stage within a day. Our results demonstrate the challenges and potential benefits of using imagers as biological sensors. An exploration of system performance under varying image resolution and frame rate suggest that an
in situ
adaptive vision system is technically feasible.
Funder
National Science Foundation
Office of Naval Research
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献