Adaptive Parallelism Exploitation under Physical and Real-Time Constraints for Resilient Systems

Author:

Itturiet Fábio1,Nazar Gabriel1,Ferreira Ronaldo1,Moreira Álvaro1,Carro Luigi1

Affiliation:

1. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Abstract

This article introduces the resilient adaptive algebraic architecture that aims at adapting parallelism exploitation of a matrix multiplication algorithm in a time-deterministic fashion to reduce power consumption while meeting real-time deadlines present in most DSP-like applications. The proposed architecture provides low-overhead error correction capabilities relying on the hardware implementation of the algorithm-based fault-tolerance method that is executed concurrently with matrix multiplication, providing efficient occupation of memory and power resources. The Resilient Adaptive Algebraic Architecture (RA 3 ) is evaluated using three real-time industrial case studies from the telecom and multimedia application domains to present the design space exploration and the adaptation possibilities the architecture offers to hardware designers. RA 3 is compared in its performance and energy efficiency with standard high-performance architectures, namely a GPU and an out-of-order general-purpose processor. Finally, we present the results of fault injection campaigns in order to measure the architecture resilience to soft errors.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing Performance Variability: A HPC-Oriented Application Scenario;2015 Euromicro Conference on Digital System Design;2015-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3