Affiliation:
1. Google, Inc., Madison, WI, USA
2. Utah State University, Logan, UT, USA
3. University of Wisconsin-Madison, Madison, WI, USA
Abstract
Future processors are expected to observe increasing rates of hardware faults. Using Dual-Modular Redundancy (DMR), two cores of a multicore can be loosely coupled to redundantly execute a single software thread, providing very high coverage from many difference sources of faults. This reliability, however, comes at a high price in terms of per-thread IPC and overall system throughput.
We make the observation that a user may want to run both applications requiring high reliability, such as financial software, and more fault tolerant applications requiring high performance, such as media or web software, on the same machine at the same time. Yet a traditional DMR system must fully operate in redundant mode whenever any application requires high reliability.
This paper proposes a Mixed-Mode Multicore (MMM), which enables most applications, including the system software, to run with high reliability in DMR mode, while applications that need high performance can avoid the penalty of DMR. Though conceptually simple, two key challenges arise: 1) care must be taken to protect reliable applications from any faults occurring to applications running in high performance mode, and 2) the desire to execute additional independent software threads for a performance application complicates the scheduling of computation to cores. After solving these issues, an MMM is shown to improve overall system performance, compared to a traditional DMR system, by approximately 2X when one reliable and one performance application are concurrently executing.
Publisher
Association for Computing Machinery (ACM)