AxOTreeS : A Tree S earch Approach to Synthesizing FPGA-based A ppro x imate O perators

Author:

Sahoo Siva Satyendra1ORCID,Ullah Salim2ORCID,Kumar Akash2ORCID

Affiliation:

1. Interuniversity Microelectronics Centre (IMEC), Belgium

2. cfaed, Technische Universität Dresden, Germany

Abstract

Approximate computing (AxC) provides the scope for achieving disproportionate gains in a system’s power, performance, and area (PPA) metrics by leveraging an application’s inherent error-resilient behavior (BEHAV). Trading computational accuracy for performance gains makes AxC an attractive proposition for implementing computationally complex AI/ML-based applications on resource-constrained embedded systems. The growing diversity of application domains using AI/ML has also led to the increasing usage of FPGA-based embedded systems. However, implementing AxC for FPGAs has primarily been limited to the post-processing of ASIC-optimized approximate operators (AxOs). This approach usually involves selecting from a set of AxOs that have been optimized for a gate-based implementation in an ASIC. While such an approach does allow leveraging existing knowledge of ASIC-based AxO design, it limits the scope for considering the challenges and opportunities associated with FPGA’s LUT-based computation structures. Similarly, the few works considering the LUT-based computing for AxO design use generic optimization approaches that do not allow integrating problem-specific prior knowledge—empirical and/or statistical. To this end, we propose a novel tree search-based approach to AxO synthesis for FPGAs. Specifically, we present a design methodology using Monte Carlo Tree Search (MCTS)-based search tree traversal that allows the designer to integrate statistical data, such as correlation, into the AxOs optimization. With the proposed methods, we report improvements over standard MCTS algorithm-based results as well as improved hypervolume for both operator-level and application-specific DSE, compared to state-of-the-art design methodologies.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AxOMaP : Designing FPGA-based A ppro x imate Arithmetic O perators using Ma thematical P rogramming;ACM Transactions on Reconfigurable Technology and Systems;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3