Affiliation:
1. Huazhong University of Science and Technology, China
Abstract
Unsupervised object Re-ID aims to learn discriminative identity features from a fully unlabeled dataset to solve the open-class re-identification problem. Satisfying results have been achieved in existing unsupervised Re-ID methods, primarily trained with pseudo-labels created by feature clustering. However, the viewpoint variation of objects is the key challenge, introducing noisy labels in the clustering process. To address this problem, a novel viewpoint disentangling and generation framework (VDG) is proposed to learn viewpoint-invariant ID features, including a disentangling and generation module, as well as a contrastive learning module. First, we design an ID encoder to map the viewpoint and identity features into the latent space. Second, a generator is used to disentangle view features and synthesize images with different orientations. Especially, the well-trained encoder serves as a pre-trained feature extractor in the contrastive learning module. Third, a viewpoint-aware loss and a class-level loss are integrated to facilitate contrastive learning between original and novel views. The generation of novel view images and the application of viewpoint-aware contrastive loss mutually assist model learning viewpoint-invariant ID features. Extensive experiments on Market-1501, DukeMTMC, MSMT17, and VeRi-776 demonstrate the effectiveness of the proposed VDG framework, as well as its superiority over the existing state-of-the-art approaches. The VDG model also demonstrates high quality in the image generation tasks.
Funder
Natural Science Foundation of China
China Postdoctoral Science Foundation
National key research and development program of China
Major Scientific and Technological Project of Hubei Province
Research Programme on Applied Fundamentals and Frontier Technologies of Wuhan
Knowledge Innovation Program of Wuhan-Basic Research
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Reference82 articles.
1. Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?
2. Joint Generative and Contrastive Learning for Unsupervised Person Re-identification
3. Learning Invariance From Generated Variance for Unsupervised Person Re-Identification
4. Yanbei Chen, Xiatian Zhu, and Shaogang Gong. 2019. Instance-guided context rendering for cross-domain person re-identification. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 232–242.
5. Yoonki Cho, Woo Jae Kim, Seunghoon Hong, and Sung-Eui Yoon. 2022. Part-based pseudo label refinement for unsupervised person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7308–7318.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献