LuisaRender

Author:

Zheng Shaokun1,Zhou Zhiqian1,Chen Xin1,Yan Difei1,Zhang Chuyan1,Geng Yuefeng2,Gu Yan3,Xu Kun1

Affiliation:

1. Tsinghua University, China

2. Recreate Games, China

3. University of California

Abstract

The advancements in hardware have drawn more attention than ever to high-quality offline rendering with modern stream processors, both in the industry and in research fields. However, the graphics APIs are fragmented and existing shading languages lack high-level constructs such as polymorphism, which adds complexity to developing and maintaining cross-platform high-performance renderers. We present LuisaRender 1 , a high-performance rendering framework for modern stream-architecture hardware. Our main contribution is an expressive C++-embedded DSL for kernel programming with JIT code generation and compilation. We also implement a unified runtime layer with resource wrappers and an optimized Monte Carlo renderer. Experiments on test scenes show that LuisaRender achieves much higher performance than existing research renderers on modern graphics hardware, e.g., 5--11× faster than PBRT-v4 and 4--16× faster than Mitsuba 3.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference47 articles.

1. Martin Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. http://tensorflow.org/ Software available from tensorflow.org. Martin Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. http://tensorflow.org/ Software available from tensorflow.org.

2. Learning to optimize halide with tree search and random programs

3. Efficient automatic scheduling of imaging and vision pipelines for the GPU

4. Aether

5. Apple. 2021. Metal. https://developer.apple.com/metal/ Apple. 2021. Metal. https://developer.apple.com/metal/

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HIPRT: A Ray Tracing Framework in HIP;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-08-09

2. Lossless Basis Expansion for Gradient‐Domain Rendering;Computer Graphics Forum;2024-07

3. Path guiding for wavefront path tracing: A memory efficient approach for GPU path tracers;Computers & Graphics;2024-06

4. FusionRender: Harnessing WebGPU's Power for Enhanced Graphics Performance on Web Browsers;Proceedings of the ACM Web Conference 2024;2024-05-13

5. Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians;ACM Transactions on Graphics;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3