Neural Brushstroke Engine

Author:

Shugrina Maria1,Li Chin-Ying2,Fidler Sanja3

Affiliation:

1. NVIDIA, Canada

2. Asana, Canada

3. NVIDIA, Canada, University of Toronto, Canada, and Vector Institute, Canada

Abstract

We propose Neural Brushstroke Engine, the first method to apply deep generative models to learn a distribution of interactive drawing tools. Our conditional GAN model learns the latent space of drawing styles from a small set (about 200) of unlabeled images in different media. Once trained, a single model can texturize stroke patches drawn by the artist, emulating a diverse collection of brush styles in the latent space. In order to enable interactive painting on a canvas of arbitrary size, we design a painting engine able to support real-time seamless patch-based generation, while allowing artists direct control of stroke shape, color and thickness. We show that the latent space learned by our model generalizes to unseen drawing and more experimental styles (e.g. beads) by embedding real styles into the latent space. We explore other applications of the continuous latent space, such as optimizing brushes to enable painting in the style of an existing artwork, automatic line drawing stylization, brush interpolation, and even natural language search over a continuous space of drawing tools. Our prototype received positive feedback from a small group of digital artists.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference98 articles.

1. Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?

2. Image2StyleGAN++: How to Edit the Embedded Images?

3. Rameen Abdal , Peihao Zhu , John Femiani , Niloy J Mitra , and Peter Wonka . 2021a. CLIP2StyleGAN: Unsupervised Extraction of StyleGAN Edit Directions. arXiv preprint arXiv:2112.05219 ( 2021 ). Rameen Abdal, Peihao Zhu, John Femiani, Niloy J Mitra, and Peter Wonka. 2021a. CLIP2StyleGAN: Unsupervised Extraction of StyleGAN Edit Directions. arXiv preprint arXiv:2112.05219 (2021).

4. Labels4Free: Unsupervised Segmentation using StyleGAN

5. StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diffusion Texture Painting;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. Ciallo: GPU-Accelerated Rendering of Vector Brush Strokes;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. InkBrush: A Sketching Tool for 3D Ink Painting;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. How HCI concepts are used in articles featuring interactive digital arts: a literature review.;Proceedings of the XXII Brazilian Symposium on Human Factors in Computing Systems;2023-10-16

5. Data‐Driven Ink Painting Brushstroke Rendering;Computer Graphics Forum;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3