Learning Virtual Chimeras by Dynamic Motion Reassembly

Author:

Lee Seyoung1,Lee Jiye1,Lee Jehee2

Affiliation:

1. Seoul National University, South Korea

2. South Korea and Seoul National University, South Korea

Abstract

The Chimera is a mythological hybrid creature composed of different animal parts. The chimera's movements are highly dependent on the spatial and temporal alignments of its composing parts. In this paper, we present a novel algorithm that creates and animates chimeras by dynamically reassembling source characters and their movements. Our algorithm exploits a two-network architecture: part assembler and dynamic controller. The part assembler is a supervised learning layer that searches for the spatial alignment among body parts, assuming that the temporal alignment is provided. The dynamic controller is a reinforcement learning layer that learns robust control policy for a wide variety of potential temporal alignments. These two layers are tightly intertwined and learned simultaneously. The chimera animation generated by our algorithm is energy efficient and expressive in terms of describing weight shifting, balancing, and full-body coordination. We demonstrate the versatility of our algorithm by generating the motor skills of a large variety of chimeras from limited source characters.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference65 articles.

1. Martín Abadi , Paul Barham , Jianmin Chen , Zhifeng Chen , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Geoffrey Irving , Michael Isard , 2016 . Tensorflow: A system for large-scale machine learning . In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) . 265--283. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265--283.

2. Learning character-agnostic motion for motion retargeting in 2D

3. DReCon

4. Interactive design of animated plushies

5. Deformable objects alive!

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MoConVQ: Unified Physics-Based Motion Control via Scalable Discrete Representations;ACM Transactions on Graphics;2024-07-19

2. LGTM: Local-to-Global Text-Driven Human Motion Diffusion Model;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

3. Adaptive Tracking of a Single-Rigid-Body Character in Various Environments;SIGGRAPH Asia 2023 Conference Papers;2023-12-10

4. Example-based Motion Synthesis via Generative Motion Matching;ACM Transactions on Graphics;2023-07-26

5. Bidirectional GaitNet: A Bidirectional Prediction Model of Human Gait and Anatomical Conditions;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Proceedings;2023-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3