Mechanisms for Precise Virtual Time Advancement in Network Emulation

Author:

Babu Vignesh1,Nicol David1

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

Network emulators enable rapid prototyping and testing of applications. In a typical emulation, the execution order and process execution burst lengths are managed by the host platform’s operating system, largely independent of the emulator. Timerbased mechanisms are typically used, but the imprecision of timer firings introduces imprecision in the advancement of time. This leads to statistical variation in behavior that is not due to the model. This article describes an open-source tool called Kronos, which provides a set of mechanisms for precise instruction-level tracking of process execution and control over execution order of containers, thus improving the mapping of executed behavior to advancement in time. This, and control of execution and placement of emulated processes in virtual time make the behavior of the emulation independent of the CPU resources of the platform that hosts the emulation. Under Kronos each process has its own virtual clock that is advanced based on a count of the number of \( \times \) 86 assembly instructions executed by its children. Two types of instruction counting techniques are discussed: (1) hardware-assisted mechanisms that are transparent to the executing application and (2) binary instrumentation-assisted mechanisms that modify the executing binary. We analyze the overheads associated with each approach and experimentally demonstrate the impact of Kronos’ time advancement precision by comparing it against emulations that, like Kronos, are embedded in virtual time, but unlike Kronos rely on Linux timers to control virtual machines and measure their progress in virtual time. We present two useful applications where Kronos aids in generating high-fidelity emulation results at low hardware costs: (1) analyzing protocol performance and (2) enabling analysis of cyber physical control systems. We also discuss limitations associated with simple linear conversions between instruction counts and ascribed virtual time and develop and evaluate more accurate virtual time conversion models.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference50 articles.

1. Free Software Foundation. 2014. OpenVZ: A container-based virtualization for Linux. Retrieved from http://openvz.org/.

2. Open Network Foundation. 2015. mininet: An instant virtual network on your laptop. Retrieved from http://mininet.org/.

3. Free Software Foundation. 2018. GDB: The GNU Project Debugger. Retrieved from https://www.gnu.org/software/gdb/.

4. R. D. Zimmerman and C. E. Murillo-Sanchez. 2020. MATPOWER (Version 7.1) [Software]. Available: https://matpower.org.

5. Free Software Foundation. 2018. Perf: The Linux performance counter subsystem. Retrieved from https://perf.wiki.kernel.org/index.php.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3