Survey on Aspect Category Detection

Author:

Chebolu Siva Uday Sampreeth1ORCID,Rosso Paolo2ORCID,Kar Sudipta3ORCID,Solorio Thamar1ORCID

Affiliation:

1. University of Houston, Houston, Texas, USA

2. Universitat Politècnica de València, Valencia, Spain

3. Amazon Alexa AI, USA

Abstract

In recent years, aspect category detection has become popular due to the rapid growth in customer reviews data on e-commerce and other online platforms. Aspect Category Detection, a sub-task of Aspect-based Sentiment Analysis, categorizes the reviews based on the features of a product such as a laptop’s display or an aspect of an entity such as the restaurant’s ambiance. Various methods have been proposed to deal with such a problem. In this article, we first introduce several datasets in the community that deal with this task and take a closer look at them by providing some exploratory analysis. Then, we review a number of representative methods for aspect category detection and classify them into two main groups: (1) supervised learning and (2) unsupervised learning. Next, we discuss the strengths and weaknesses of different kinds of methods, which are expected to benefit both practical applications and future research. Finally, we discuss the challenges, open problems, and future research directions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3