SQL2FPGA: Automated Acceleration of SQL Query Processing on Modern CPU-FPGA Platforms

Author:

Lu Alec1ORCID,Agrawal Jahanvi Narendra2ORCID,Fang Zhenman1ORCID

Affiliation:

1. School of Engineering Science, Simon Fraser University, Canada

2. International Institute of Information Technology, India

Abstract

Today’s big data query engines are constantly under pressure to keep up with the rapidly increasing demand for faster processing of more complex workloads. In the past few years, FPGA-based database acceleration efforts have demonstrated promising performance improvement with good energy efficiency. However, few studies target the programming and design automation support to leverage the FPGA accelerator benefits in query processing. Most of them rely on the SQL query plan generated by CPU query engines and manually map the query plan onto the FPGA accelerators, which is tedious and error-prone. Moreover, such CPU-oriented query plans do not consider the utilization of FPGA accelerators and could lose more optimization opportunities. In this paper, we present SQL2FPGA, an FPGA accelerator-aware compiler to automatically map SQL queries onto the heterogeneous CPU-FPGA platforms. Our SQL2FPGA front-end takes an optimized logical plan of a SQL query from a database query engine and transforms it into a unified operator-level intermediate representation. To generate an optimized FPGAaware physical plan, SQL2FPGA implements a set of compiler optimization passes to 1) improve operator acceleration coverage by the FPGA, 2) eliminate redundant computation during physical execution, and 3) minimize data transfer overhead between operators on the CPU and FPGA. Furthermore, it also leverages machine learning techniques to predict and identify the optimal platform, either CPU or FPGA, for the physical execution of individual query operations. Finally, SQL2FPGA generates the associated query acceleration code for heterogeneous CPU-FPGA system deployment. Compared to the widely used Apache Spark SQL framework running on the CPU, SQL2FPGA—using two AMD/Xilinx HBM-based Alveo U280 FPGA boards and Ver.2020 AMD/Xilinx FPGA overlay designs—achieves an average performance speedup of 10.1x and 13.9x across all 22 TPC-H benchmark queries in a scale factor of 1GB (SF1) and 30GB (SF30), respectively. While evaluated on AMD/Xilinx Alveo U50 FPGA boards, SQL2FPGA using Ver. 2022 AMD/Xilinx FPGA overlay designs also achieve an average speedup of 9.6x at SF1 scale factor.

Publisher

Association for Computing Machinery (ACM)

Reference42 articles.

1. Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik. 2012. Learning-based Query Performance Modeling and Prediction. In 2012 IEEE 28th International Conference on Data Engineering. 390–401.

2. Spark SQL

3. FPGA Programming for the Masses

4. Peter Bakkum and Kevin Skadron. 2010. Accelerating SQL Database Operations on a GPU with CUDA. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units (GPGPU-3). Association for Computing Machinery, 94–103.

5. Andreas Becher, Florian Bauer, Daniel Ziener, and Jürgen Teich. 2014. Energy-aware SQL query acceleration through FPGA-based dynamic partial reconfiguration. In 2014 24th International Conference on Field Programmable Logic and Applications (FPL). 1–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3