Towards Effective and Efficient Sparse Neural Information Retrieval

Author:

Formal Thibault1,Lassance Carlos1,Piwowarski Benjamin2,Clinchant Stéphane1

Affiliation:

1. Naver Labs Europe, France

2. Sorbonne Université, CNRS, ISIR, France

Abstract

Sparse representation learning based on Pre-trained Language Models has seen a growing interest in Information Retrieval. Such approaches can take advantage of the proven efficiency of inverted indexes, and inherit desirable IR priors such as explicit lexical matching or some degree of interpretability. In this work, we thoroughly develop the framework of sparse representation learning in IR, which unifies term weighting and expansion in a supervised setting. We then build on SPLADE – a sparse expansion-based retriever – and show to which extent it is able to benefit from the same training improvements as dense bi-encoders, by studying the effect of distillation, hard negative mining as well as the Pre-trained Language Model’s initialization on its effectiveness – leading to state-of-the-art results in both in- and out-of-domain evaluation settings (SPLADE++). We furthermore propose efficiency improvements, allowing us to reach latency requirements on par with traditional keyword-based approaches (Efficient-SPLADE).

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference145 articles.

1. Jimmy Lei Ba Jamie Ryan Kiros and Geoffrey E. Hinton. 2016. Layer Normalization. https://doi.org/10.48550/ARXIV.1607.06450 10.48550/ARXIV.1607.06450

2. Jimmy Lei Ba Jamie Ryan Kiros and Geoffrey E. Hinton. 2016. Layer Normalization. https://doi.org/10.48550/ARXIV.1607.06450

3. Yang Bai Xiaoguang Li Gang Wang Chaoliang Zhang Lifeng Shang Jun Xu Zhaowei Wang Fangshan Wang and Qun Liu. 2020. SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval. https://doi.org/10.48550/ARXIV.2010.00768 10.48550/ARXIV.2010.00768

4. Yang Bai Xiaoguang Li Gang Wang Chaoliang Zhang Lifeng Shang Jun Xu Zhaowei Wang Fangshan Wang and Qun Liu. 2020. SparTerm: Learning Term-based Sparse Representation for Fast Text Retrieval. https://doi.org/10.48550/ARXIV.2010.00768

5. Payal Bajaj , Daniel Campos , Nick Craswell , Li Deng , Jianfeng Gao , Xiaodong Liu , Rangan Majumder , Andrew McNamara , Bhaskar Mitra , Tri Nguyen , et al . 2016 . Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268(2016). Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. 2016. Ms marco: A human generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268(2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3