Implications of hierarchical N-body methods for multiprocessor architectures

Author:

Singh Jaswinder Pal1,Hennessy John L.2,Gupta Anoop1

Affiliation:

1. Stanford Univ., Stanford, CA

2. Princeton Univ., Princeton, NJ

Abstract

To design effective large-scale multiprocessors, designers need to understand the characteristics of the applications that will use the machines. Application characteristics of particular interest include the amount of communication relative to computation, the structure of the communication, and the local cache and memory requirements, as well as how these characteristics scale with larger problems and machines. One important class of applications is based on hierarchical N-body methods, which are used to solve a wide range of scientific and engineering problems efficiently. Important characteristics of these methods include the nonuniform and dynamically changing nature of the domains to which they are applied, and their use of long-range, irregular communication. This article examines the key architectural implications of representative applications that use the two dominant hierarchical N-body methods: the Barnes-Hut Method and the Fast Multipole Method. We first show that exploiting temporal locality on accesses to communicated data is critical to obtaining good performance on these applications and then argue that coherent caches on shared-address-space machines exploit this locality both automatically and very effectively. Next, we examine the implications of scaling the applications to run on larger machines. We use scaling methods that reflect the concerns of the application scientist and find that this leads to different conclusions about how communication traffic and local cache and memory usage scale than scaling based only on data set size. In particular, we show that under the most realistic form of scaling, both the communication-to-computation ratio as well as the working-set size (and hence the ideal cache size per processor) grow slowly as larger problems are run on larger machines. Finally, we examine the effects of using the two dominant abstractions for interprocessor communication: a shared address space and explicit message passing between private address spaces. We show that the lack of an efficiently supported shared address space will substantially increase the programming complexity and performance overheads for these applications.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference32 articles.

1. AARSETH S. J. HENON M. AND WIELEN R. 1974. Astronomy Astrophysics 37. AARSETH S. J. HENON M. AND WIELEN R. 1974. Astronomy Astrophysics 37.

2. An efficient program for many body simulation. SIAM J. Sc#;APPEL A. A.;Star. Comput.,1985

3. Error analysis of a tree code;BARNES J. E.;Astrophysics J. Suppl.,1989

4. A hierarchical O(N log N) force calculation algorithm;BARNES J. E.;Nature,1986

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3