Generating Activity Snippets by Learning Human-Scene Interactions

Author:

Li Changyang1ORCID,Yu Lap-Fai1ORCID

Affiliation:

1. George Mason University, Fairfax, United States of America

Abstract

We present an approach to generate virtual activity snippets, which comprise sequenced keyframes of multi-character, multi-object interaction scenarios in 3D environments, by learning from recordings of human-scene interactions. The generation consists of two stages. First, we use a sequential deep graph generative model with a temporal module to iteratively generate keyframe descriptions, which represent abstract interactions using graphs, while preserving spatial-temporal relations through the activities. Second, we devise an optimization framework to instantiate the activity snippets in virtual 3D environments guided by the generated keyframe descriptions. Our approach optimizes the poses of character and object instances encoded by the graph nodes to satisfy the relations and constraints encoded by the graph edges. The instantiation process includes a coarse 2D optimization followed by a fine 3D optimization to effectively explore the complex solution space for placing and posing the instances. Through experiments and a perceptual study, we applied our approach to generate plausible activity snippets under different settings.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference61 articles.

1. Text2SceneVR

2. Task-based locomotion

3. Nikos Athanasiou , Mathis Petrovich , Michael J Black , and Gül Varol . 2022 . TEACH: Temporal Action Composition for 3D Humans. arXiv preprint arXiv:2209.04066 (2022). Nikos Athanasiou, Mathis Petrovich, Michael J Black, and Gül Varol. 2022. TEACH: Temporal Action Composition for 3D Humans. arXiv preprint arXiv:2209.04066 (2022).

4. Synthesis of concurrent object manipulation tasks;Bai Yunfei;ACM Transactions on Graphics,2012

5. ActivityNet: A large-scale video benchmark for human activity understanding

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3