Design and evaluation of random linear network coding Accelerators on FPGAs

Author:

Kim Sunwoo1,Jeong Won Seob2,Ro Won W.2,Gaudiot Jean-Luc3

Affiliation:

1. Hyundai Motor Company, Republic of Korea

2. Yonsei University, Seoul, Republic of Korea

3. University of California, Irvine

Abstract

Network coding is a well-known technique used to enhance network throughput and reliability by applying special coding to data packets. One critical problem in practice, when using the random linear network coding technique, is the high computational overhead. More specifically, using this technique in embedded systems with low computational power might cause serious delays due to the complex Galois field operations and matrix handling. To this end, this article proposes a high-performance decoding logic for random linear network coding using field-programmable gate-array (FPGA) technology. We expect that the inherent reconfigurability of FPGAs will provide sufficient performance as well as programmability to cope with changes in the specification of the coding. The main design motivation was to improve the decoding delay by dividing and parallelizing the entire decoding process. Fast arithmetic operations are achieved by the proposed parallelized GF ALUs, which allow calculations with all the elements of a single row of a matrix to be performed concurrently. To improve the flexibility in the utilization of the FPGA components, two different decoding methods have been designed and compared. The performance of the proposed idea is evaluated by comparing with the performance of the decoding process executed by general-purpose processors through an equivalent software algorithm. Overall, a maximum throughput of 65.98 Mbps is achieved with the proposed FPGA design on an XC5VLX110T Virtex 5 device. In addition, the proposed design provides speedups of up to 13.84 compared to an aggressively parallelized software decoding algorithm run on a quad-core AMD processor. Moreover, the design affords 12 times higher power efficiency in terms of throughput per watt than an ARM Coretex-A9 processor.

Funder

National Research Foundation of Korea

Division of Computing and Communication Foundations

Ministry of Education, Science and Technology

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Random Linear Network Coding Platform MPSoC Designed in 22nm FDSOI;2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI);2022-07

2. Why Do You Need This?;Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems;2019-05-02

3. A Random Linear Network Coding Accelerator in a 2.4GHz Transmitter for IoT Applications;IEEE Transactions on Circuits and Systems I: Regular Papers;2017-09

4. CONDENSE: A Reconfigurable Knowledge Acquisition Architecture for Future 5G IoT;IEEE Access;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3