Energy types

Author:

Cohen Michael1,Zhu Haitao Steve1,Senem Emgin Ezgi1,Liu Yu David1

Affiliation:

1. SUNY Binghamton, Binghamton, NY, USA

Abstract

This paper presents a novel type system to promote and facilitate energy-aware programming. Energy Types is built upon a key insight into today's energy-efficient systems and applications: despite the popular perception that energy and power can only be described in joules and watts, real-world energy management is often based on discrete phases and modes, which in turn can be reasoned about by type systems very effectively. A phase characterizes a distinct pattern of program workload, and a mode represents an energy state the program is expected to execute in. This paper describes a programming model where phases and modes can be intuitively specified by programmers or inferred by the compiler as type information. It demonstrates how a type-based approach to reasoning about phases and modes can help promote energy efficiency. The soundness of our type system and the invariants related to inter-phase and inter-mode interactions are rigorously proved. Energy Types is implemented as the core of a prototyped object-oriented language ET for smartphone programming. Preliminary studies show ET can lead to significant energy savings for Android Apps.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference41 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Do popular apps have issues regarding energy efficiency?;PeerJ Computer Science;2024-02-29

2. carbond: An Operating-System Daemon for Carbon Awareness;Proceedings of the 2nd Workshop on Sustainable Computer Systems;2023-07-09

3. An Architectural Charge Management Interface for Energy-Harvesting Systems;2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO);2022-10

4. SmartApprox: Learning-based configuration of approximate memories for energy-efficient execution;Sustainable Computing: Informatics and Systems;2022-04

5. A review on the sustainable energy generation from the pyrolysis of coconut biomass;Scientific African;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3