Affiliation:
1. Purdue University, West Lafayette, IN, USA
Abstract
Sampling is a very important and low-cost approach to uncertain data processing, in which output variations caused by input errors are sampled. Traditional methods tend to treat a program as a blackbox. In this paper, we show that through program analysis, we can expose the internals of sample executions so that the process can become more selective and focused. In particular, we develop a sampling runtime that can selectively sample in input error bounds to expose discontinuity in output functions. It identifies all the program factors that can potentially lead to discontinuity and hash the values of such factors during execution in a cost-effective way. The hash values are used to guide the sampling process. Our results show that the technique is very effective for real-world programs. It can achieve the precision of a high sampling rate with the cost of a lower sampling rate.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献