Aggressive inlining

Author:

Ayers Andrew1,Schooler Richard1,Gottlieb Robert1

Affiliation:

1. Hewlett-Packard Massachusetts Language Laboratory, 300 Apollo Drive, Chelmsford, MA

Abstract

Existing research understates the benefits that can be obtained from inlining and cloning, especially when guided by profile information. Our implementation of inlining and cloning yields excellent results on average and very rarely lowers performance. We believe our good results can be explained by a number of factors: inlining at the intermediate-code level removes most technical restrictions on what can be inlined; the ability to inline across files and incorporate profile information enables us to choose better inline candidates; a high-quality back end can exploit the scheduling and register allocation opportunities presented by larger subroutines; an aggressive processor architecture benefits from more predictable branch behavior; and a large instruction cache mitigates the impact of code expansion. We describe the often dramatic impact of our inlining and cloning on performance: for example, the implementations of our inlining and cloning algorithms in the HP-UX 10.20 compilers boost SPECint95 performance on a PA8000-based workstation by a factor of 1.32.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GraalSP: Polyglot, efficient, and robust machine learning-based static profiler;Journal of Systems and Software;2024-07

2. Exploiting Partially Context-sensitive Profiles to Improve Performance of Hot Code;ACM Transactions on Programming Languages and Systems;2023-12

3. Bibliography;Engineering a Compiler;2023

4. Data-Flow Analysis;Engineering a Compiler;2023

5. Understanding and exploiting optimal function inlining;Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2022-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3