Load Balancing with Job-Size Testing: Performance Improvement or Degradation?

Author:

Anselmi Jonatha1ORCID,Doncel Josu2ORCID

Affiliation:

1. University Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, St. Martin d’Hères, France

2. University of the Basque Country, UPV/EHU, Leioa, Spain

Abstract

In the context of decision making under explorable uncertainty, scheduling with testing is a powerful technique used in the management of computer systems to improve performance via better job-dispatching decisions. Upon job arrival, a scheduler may run some testing algorithm against the job to extract some information about its structure, e.g., its size, and properly classify it. The acquisition of such knowledge comes with a cost because the testing algorithm delays the dispatching decisions, though this is under control. In this article, we analyze the impact of such extra cost in a load balancing setting by investigating the following questions: does it really pay off to test jobs? If so, under which conditions? Under mild assumptions connecting the information extracted by the testing algorithm in relationship with its running time, we show that whether scheduling with testing brings a performance degradation or improvement strongly depends on the traffic conditions, system size and the coefficient of variation of job sizes. Thus, the general answer to the above questions is non-trivial and some care should be considered when deploying a testing policy. Our results are achieved by proposing a load balancing model for scheduling with testing that we analyze in two limiting regimes. When the number of servers grows to infinity in proportion to the network demand, we show that job-size testing actually degrades performance unless short jobs can be predicted reliably almost instantaneously and the network load is sufficiently high. When the coefficient of variation of job sizes grows to infinity, we construct testing policies inducing an arbitrarily large performance gain with respect to running jobs untested.

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3