Complementary Coarse-to-Fine Matching for Video Object Segmentation

Author:

Chen Zhen1ORCID,Yang Ming2ORCID,Zhang Shiliang1ORCID

Affiliation:

1. National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, China

2. Multimodality Cognition, Ant Group, USA

Abstract

Semi-supervised Video Object Segmentation (VOS) needs to establish pixel-level correspondences between a video frame and preceding segmented frames to leverage their segmentation clues. Most works rely on features at a single scale to establish those correspondences, e.g., perform dense matching with Convolutional Neural Network (CNN) features from a deep layer. Differently, this work explores complementary features at different scales to pursue more robust feature matching. A coarse feature from a deep layer is first adopted to get coarse pixel-level correspondences. We hence evaluate the quality of those correspondences, and select pixels with low-quality correspondences for fine-scale feature matching. Segmentation clues of previous frames are propagated by both coarse and fine-scale correspondences, which are fused with appearance features for object segmentation. Compared with previous works, this coarse-to-fine matching scheme is more robust to distractions by similar objects and better preserves object details. The sparse fine-scale matching also ensures a fast inference speed. On popular VOS datasets including DAVIS and YouTube-VOS, the proposed method shows promising performance compared with recent works.

Funder

Natural Science Foundation of China

The National Key Research and Development Program of China

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference56 articles.

1. CNN in MRF: Video Object Segmentation via Inference in a CNN-Based Higher-Order Spatio-Temporal MRF

2. Goutam Bhat, Felix Järemo Lawin, Martin Danelljan, Andreas Robinson, Michael Felsberg, Luc Van Gool, and Radu Timofte. 2020. Learning what to learn for video object segmentation. In Computer VisionECCV 2020: 16th European Conference, Glasgow, UK, August 2328, 2020, Proceedings, Part II 16.

3. One-Shot Video Object Segmentation

4. Optimizing Video Object Detection via a Scale-Time Lattice

5. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Nighttime Semantic Segmentation the Hard Way;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3