Assistance in Teleoperation of Redundant Robots through Predictive Joint Maneuvering

Author:

Brooks Connor1,Rees Wyatt1,Szafir Daniel2

Affiliation:

1. University of Colorado Boulder, USA

2. University of North Carolina at Chapel Hill, USA

Abstract

In teleoperation of redundant robotic manipulators, translating an operator’s end effector motion command to joint space can be a tool for maintaining feasible and precise robot motion. Through optimizing redundancy resolution, the control system can ensure the end effector maintains maneuverability by avoiding joint limits and kinematic singularities. In autonomous motion planning, this optimization can be done over an entire trajectory to improve performance over local optimization. However, teleoperation involves a human-in-the-loop who determines the trajectory to be executed through a dynamic sequence of motion commands. We present two systems, PrediKCT and PrediKCS, for utilizing a predictive model of operator commands in order to accomplish this redundancy resolution in a manner that considers future expected motion during teleoperation. Using a probabilistic model of operator commands allows optimization over an expected trajectory of future motion rather than consideration of local motion alone. Evaluation through a user study demonstrates improved control outcomes from this predictive redundancy resolution over minimum joint velocity solutions and inverse kinematics-based motion controllers.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3