Test Optimization in DNN Testing: A Survey

Author:

Hu Qiang1ORCID,Guo Yuejun2ORCID,Xie Xiaofei3ORCID,Cordy Maxime4ORCID,Ma Lei5ORCID,Papadakis Mike1ORCID,Le Traon Yves1ORCID

Affiliation:

1. University of Luxembourg, Esch-sur-Alzette, Luxembourg

2. Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg

3. Singapore Management University, Singapore, Singapore

4. University of Luxembourg, Luxembourg, Luxembourg

5. The University of Tokyo, Edmonton, Japan and University of Albert, Canada

Abstract

This article presents a comprehensive survey on test optimization in deep neural network (DNN) testing. Here, test optimization refers to testing with low data labeling effort. We analyzed 90 papers, including 43 from the software engineering (SE) community, 32 from the machine learning (ML) community, and 15 from other communities. Our study: (i) unifies the problems as well as terminologies associated with low-labeling cost testing, (ii) compares the distinct focal points of SE and ML communities, and (iii) reveals the pitfalls in existing literature. Furthermore, we highlight the research opportunities in this domain.

Funder

Luxembourg National Research Funds

European Union’s Horizon Research and Innovation Programme

Publisher

Association for Computing Machinery (ACM)

Reference127 articles.

1. Black-Box Testing of Deep Neural Networks through Test Case Diversity

2. Zohreh Aghababaeyan Manel Abdellatif Mahboubeh Dadkhah and Lionel Briand. 2023. DeepGD: a multi-objective black-box test selection approach for deep neural networks. arxiv:2303.04878Retrieved from https://arxiv.org/pdf/2303.04878

3. Jonathan Aigrain and Marcin Detyniecki. 2019. Detecting adversarial examples and other misclassifications in neural networks by introspection. arxiv:1905.09186Retrieved from https://arxiv.org/pdf/1905.09186

4. Hamzah Al-Qadasi, Changshun Wu, Yliès Falcone, and Saddek Bensalem. 2022. DeepAbstraction: 2-level prioritization for unlabeled test inputs in deep neural networks. In Proceedings of the IEEE International Conference On Artificial Intelligence Testing. IEEE, Piscataway, NJ, USA, 64–71. DOI:10.1109/AITest55621.2022.00018

5. Black-box Safety Analysis and Retraining of DNNs based on Feature Extraction and Clustering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling Code Pre-Trained Models: Investigating Syntax and Semantics Capacities;ACM Transactions on Software Engineering and Methodology;2024-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3