Adaptive Speculative Processing of Out-of-Order Event Streams

Author:

Mutschler Christopher1,Philippsen Michael2

Affiliation:

1. Friedrich-Alexander-University of Erlangen-Nuremberg and Fraunhofer IIS, Erlangen, Germany

2. Friedrich-Alexander-University of Erlangen-Nuremberg FAU, Erlangen, Germany

Abstract

Distributed event-based systems are used to detect meaningful events with low latency in high data-rate event streams that occur in surveillance, sports, finances, etc. However, both known approaches to dealing with the predominant out-of-order event arrival at the distributed detectors have their shortcomings: buffering approaches introduce latencies for event ordering, and stream revision approaches may result in system overloads due to unbounded retraction cascades. This article presents an adaptive speculative processing technique for out-of-order event streams that enhances typical buffering approaches. In contrast to other stream revision approaches developed so far, our novel technique encapsulates the event detector, uses the buffering technique to delay events but also speculatively processes a portion of it, and adapts the degree of speculation at runtime to fit the available system resources so that detection latency becomes minimal. Our technique outperforms known approaches on both synthetical data and real sensor data from a realtime locating system (RTLS) with several thousands of out-of-order sensor events per second. Speculative buffering exploits system resources and reduces latency by 40% on average.

Funder

Fraunhofer IIS

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keyed Watermarks: A Fine-grained Tracking of Event-time in Apache Flink;2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES);2023-10-21

2. Process Mining over Unordered Event Streams;2020 2nd International Conference on Process Mining (ICPM);2020-10

3. Simplifying CPS Application Development through Fine-grained, Automatic Timeout Predictions;ACM Transactions on Internet of Things;2020-07-14

4. MDDRSPF: A Model Driven Distributed Real-Time Stream Processing Framework;2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2019-12

5. Complex event recognition in the Big Data era: a survey;The VLDB Journal;2019-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3