Comparing Statistical, Analytical, and Learning-Based Routing Approaches for Delay-Tolerant Networks

Author:

D'Argenio Pedro R.12ORCID,Fraire Juan324ORCID,Hartmanns Arnd5ORCID,Raverta Fernando42ORCID

Affiliation:

1. Universidad Nacional de Córdoba, Córdoba, Argentina

2. CONICET, Córdoba Argentina

3. Inria, INSA Lyon, Université de Lyon, Villeurbanne France

4. Universidad Nacional de Córdoba, Córdoba Argentina

5. University of Twente, Enschede Netherlands

Abstract

In delay-tolerant networks (DTNs) with uncertain contact plans, the communication episodes and their reliabilities are known a priori. To maximise the end-to-end delivery probability, a bounded network-wide number of message copies are allowed. The resulting multi-copy routing optimization problem is naturally modelled as a Markov decision process with distributed information. In this paper, we provide an in-depth comparison of three solution approaches: statistical model checking with scheduler sampling, the analytical RUCoP algorithm based on probabilistic model checking, and an implementation of concurrent Q-learning. We use an extensive benchmark set comprising random networks, scalable binomial topologies, and realistic ring-road low Earth orbit satellite networks. We evaluate the obtained message delivery probabilities as well as the computational effort. Our results show that all three approaches are suitable tools for obtaining reliable routes in DTN, and expose a trade-off between scalability and solution quality.

Publisher

Association for Computing Machinery (ACM)

Reference87 articles.

1. Future space networks: Toward the next giant leap for humankind;Abdelsadek Y;IEEE Transactions on Communications,2022

2. A Survey of Statistical Model Checking

3. Contact graph routing in DTN space networks: overview, enhancements and performance

4. Model Checking Probabilistic Systems

5. Christel Baier and Joost-Pieter Katoen. 2008. Principles of Model Checking. MIT Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3