Passage time distributions in large Markov chains

Author:

Harrison Peter G.1,Knottenbelt William J.1

Affiliation:

1. Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom

Abstract

Probability distributions of response times are important in the design and analysis of transaction processing systems and computer-communication systems. We present a general technique for deriving such distributions from high-level modelling formalisms whose state spaces can be mapped onto finite Markov chains. We use a load-balanced, distributed implementation to find the Laplace transform of the first passage time density and its derivatives at arbitrary values of the transform parameter s . Setting s = 0 yields moments while the full passage time distribution is obtained using a novel distributed Laplace transform inverter based on the Laguerre method. We validate our method against a variety of simple densities, cycle time densities in certain overtake-free (tree-like) queueing networks and a simulated Petri net model. Our implementation is thereby rigorously validated and has already been applied to substantial Markov chains with over 1 million states. Corresponding theoretical results for semi-Markov chains are also presented.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Density Estimation of Response Times in Layered Software Systems;IEEE Transactions on Software Engineering;2024-03

2. Analysis of Exploration in Swarm Robotic Systems;Lecture Notes in Networks and Systems;2022

3. Facilitating load-dependent queueing analysis through factorization;Performance Evaluation;2021-12

4. A Mixture Density Network Approach to Predicting Response Times in Layered Systems;2021 29th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS);2021-11-03

5. A classification and review of timed Markov models of manufacturing systems;Computers & Industrial Engineering;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3