Affiliation:
1. Imperial College of Science, Technology and Medicine, London SW7 2BZ, United Kingdom
Abstract
Probability distributions of response times are important in the design and analysis of transaction processing systems and computer-communication systems. We present a general technique for deriving such distributions from high-level modelling formalisms whose state spaces can be mapped onto finite Markov chains. We use a load-balanced, distributed implementation to find the Laplace transform of the first passage time density and its derivatives at arbitrary values of the transform parameter
s
. Setting
s
= 0 yields moments while the full passage time distribution is obtained using a novel distributed Laplace transform inverter based on the Laguerre method. We validate our method against a variety of simple densities, cycle time densities in certain overtake-free (tree-like) queueing networks and a simulated Petri net model. Our implementation is thereby rigorously validated and has already been applied to substantial Markov chains with over 1 million states. Corresponding theoretical results for semi-Markov chains are also presented.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献