FHDnn
Author:
Affiliation:
1. UC San Diego
Funder
NSF
CRISP
SRC Global Research Collaboration (GRC)
Publisher
ACM
Link
https://dl.acm.org/doi/pdf/10.1145/3489517.3530394
Reference21 articles.
1. [n. d.]. UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets/ISOLET. [n. d.]. UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets/ISOLET.
2. Ganesh Ananthanarayanan et al. 2017. Real-time video analytics: The killer app for edge computing. computer 50 10 (2017) 58--67. Ganesh Ananthanarayanan et al. 2017. Real-time video analytics: The killer app for edge computing. computer 50 10 (2017) 58--67.
3. Austin P Arechiga etal 2018. The robustness of modern deep learning architectures against single event upset errors. In 2018 IEEE High Performance extreme Computing Conference (HPEC). IEEE 1--6. Austin P Arechiga et al. 2018. The robustness of modern deep learning architectures against single event upset errors. In 2018 IEEE High Performance extreme Computing Conference (HPEC). IEEE 1--6.
4. Nader Bouacida et al. 2021. Adaptive Federated Dropout: Improving Communication Efficiency and Generalization for Federated Learning. In INFOCOM WKSHPS. IEEE 1--6. Nader Bouacida et al. 2021. Adaptive Federated Dropout: Improving Communication Efficiency and Generalization for Federated Learning. In INFOCOM WKSHPS. IEEE 1--6.
5. Sebastian Caldas et al. 2019. Expanding the Reach of Federated Learning by Reducing Client Resource Requirements. arXiv:1812.07210 (Jan 2019). Sebastian Caldas et al. 2019. Expanding the Reach of Federated Learning by Reducing Client Resource Requirements. arXiv:1812.07210 (Jan 2019).
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MultimodalHD: Federated Learning Over Heterogeneous Sensor Modalities using Hyperdimensional Computing;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25
2. Communication Efficiency and Non-Independent and Identically Distributed Data Challenge in Federated Learning: A Systematic Mapping Study;Applied Sciences;2024-03-24
3. Enhanced Noise-Resilient Pressure Mat System Based on Hyperdimensional Computing;Sensors;2024-02-04
4. HyperFeel: An Efficient Federated Learning Framework Using Hyperdimensional Computing;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22
5. GitFL: Uncertainty-Aware Real-Time Asynchronous Federated Learning Using Version Control;2023 IEEE Real-Time Systems Symposium (RTSS);2023-12-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3