Performance Evaluation of Aggregation-based Group Recommender Systems for Ephemeral Groups

Author:

Ceh-Varela Edgar1ORCID,Cao Huiping2ORCID,Lauw Hady W.3ORCID

Affiliation:

1. Department of Mathematical Sciences, Eastern New Mexico University

2. Department of Computer Science, New Mexico State University

3. School of Information Systems, Singapore Management University

Abstract

Recommender Systems ( RecSys ) provide suggestions in many decision-making processes. Given that groups of people can perform many real-world activities (e.g., a group of people attending a conference looking for a place to dine), the need for recommendations for groups has increased. A wide range of Group Recommender Systems ( GRecSys ) has been developed to aggregate individual preferences to group preferences. We analyze 175 studies related to GRecSys . Previous works evaluate their systems using different types of groups (sizes and cohesiveness), and most of such works focus on testing their systems using only one type of item, called Experience Goods (EG). As a consequence, it is hard to get consistent conclusions about the performance of GRecSys . We present the aggregation strategies and aggregation functions that GRecSys commonly use to aggregate group members’ preferences. This study experimentally compares the performance (i.e., accuracy, ranking quality, and usefulness) using four metrics (Hit Ratio, Normalize Discounted Cumulative Gain, Diversity, and Coverage) of eight representative RecSys for group recommendations on ephemeral groups. Moreover, we use two different aggregation strategies, 10 different aggregation functions, and two different types of items on two types of datasets (EG and Search Goods (SG)) containing real-life datasets. The results show that the evaluation of GRecSys needs to use both EG and SG types of data, because the different characteristics of datasets lead to different performance. GRecSys using Singular Value Decomposition or Neural Collaborative Filtering methods work better than others. It is observed that the Average aggregation function is the one that produces better results.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recommender systems applied to the tourism industry: a literature review;Cogent Business & Management;2024-06-25

2. Systematic Literature Review on Recommender System: Approach, Problem, Evaluation Techniques, Datasets;IEEE Access;2024

3. Group recommendation exploiting characteristics of user-item and collaborative rating of users;Multimedia Tools and Applications;2023-09-12

4. Improving Group Recommendation using Revised Slope One;2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC);2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3