Affiliation:
1. The University of Tokyo, Kashiwa, Japan
2. SUSTech-UTokyo Joint Research Center on Super Smart City, Southern University of Science and Technology, The University of Tokyo, Shenzhen, China
3. SUSTech-UTokyo Joint Research Center on Super Smart City, Southern University of Science and Technology, The University of Tokyo, Kashiwa, Japan
Abstract
Rapidly developing location acquisition technologies provide a powerful tool for understanding and predicting human mobility in cities, which is very significant for urban planning, traffic regulation, and emergency management. However, with the existing methodologies, it is still difficult to accurately predict millions of peoples’ mobility in a large urban area such as Tokyo, Shanghai, and Hong Kong, especially when collected data used for model training are often limited to a small portion of the total population. Obviously, human activities in city are closely linked with point-of-interest (POI) information, which can reflect the semantic meaning of human mobility. This motivates us to fuse human mobility data and city POI data to improve the prediction performance with limited training data, but current fusion technologies can hardly handle these two heterogeneous data. Therefore, we propose a unique POI-embedding mechanism, that aggregates the regional POIs by categories to generate an artificial POI-image for each urban grid and enriches each trajectory snippet to a four-dimensional tensor in an analogous manner to a short video. Then, we design a deep learning architecture combining CNN with LSTM to simultaneously capture both the spatiotemporal and geographical information from the enriched trajectories. Furthermore, transfer learning is employed to transfer mobility knowledge from one city to another, so that we can fully utilize other cities’ data to train a stronger model for the target city with only limited data available. Finally, we achieve satisfactory performance of human mobility prediction at the citywide level using a limited amount of trajectories as training data, which has been validated over five urban areas of different types and scales.
Funder
Grant-in-Aid for Early-Career Scientists of Japan Society for the Promotion of Science
Publisher
Association for Computing Machinery (ACM)
Reference56 articles.
1. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org. Martín Abadi Ashish Agarwal Paul Barham Eugene Brevdo Zhifeng Chen Craig Citro Greg S. Corrado Andy Davis Jeffrey Dean Matthieu Devin Sanjay Ghemawat Ian Goodfellow Andrew Harp Geoffrey Irving Michael Isard Yangqing Jia Rafal Jozefowicz Lukasz Kaiser Manjunath Kudlur Josh Levenberg Dan Mané Rajat Monga Sherry Moore Derek Murray Chris Olah Mike Schuster Jonathon Shlens Benoit Steiner Ilya Sutskever Kunal Talwar Paul Tucker Vincent Vanhoucke Vijay Vasudevan Fernanda Viégas Oriol Vinyals Pete Warden Martin Wattenberg Martin Wicke Yuan Yu and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from http://tensorflow.org.
2. Social LSTM: Human Trajectory Prediction in Crowded Spaces
3. Recommendations in location-based social networks: a survey
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献