Affiliation:
1. Carnegie Mellon University
Abstract
Performance monitoring in most distributed systems provides minimal guidance for tuning, problem diagnosis, and decision making. Stardust is a monitoring infrastructure that replaces traditional performance counters with end-to-end traces of requests and allows for efficient querying of performance metrics. Such traces better inform key administrative performance challenges by enabling, for example, extraction of per-workload, per-resource demand information and per-workload latency graphs. This paper reports on our experience building and using end-to-end tracing as an on-line monitoring tool in a distributed storage system. Using diverse system workloads and scenarios, we show that such fine-grained tracing can be made efficient (less than 6% overhead) and is useful for on- and off-line analysis of system behavior. These experiences make a case for having other systems incorporate such an instrumentation framework.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献