Stardust

Author:

Thereska Eno1,Salmon Brandon1,Strunk John1,Wachs Matthew1,Abd-El-Malek Michael1,Lopez Julio1,Ganger Gregory R.1

Affiliation:

1. Carnegie Mellon University

Abstract

Performance monitoring in most distributed systems provides minimal guidance for tuning, problem diagnosis, and decision making. Stardust is a monitoring infrastructure that replaces traditional performance counters with end-to-end traces of requests and allows for efficient querying of performance metrics. Such traces better inform key administrative performance challenges by enabling, for example, extraction of per-workload, per-resource demand information and per-workload latency graphs. This paper reports on our experience building and using end-to-end tracing as an on-line monitoring tool in a distributed storage system. Using diverse system workloads and scenarios, we show that such fine-grained tracing can be made efficient (less than 6% overhead) and is useful for on- and off-line analysis of system behavior. These experiences make a case for having other systems incorporate such an instrumentation framework.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thesios: Synthesizing Accurate Counterfactual I/O Traces from I/O Samples;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3;2024-04-27

2. Component-distinguishable Co-location and Resource Reclamation for High-throughput Computing;ACM Transactions on Computer Systems;2023-11-18

3. Capturing Request Execution Path for Understanding Service Behavior and Detecting Anomalies Without Code Instrumentation;IEEE Transactions on Services Computing;2023-03-01

4. Tracing Processing of Service Requests in Cloud Environments;2022 IEEE 27th Pacific Rim International Symposium on Dependable Computing (PRDC);2022-11

5. A Survey of Software Log Instrumentation;ACM Computing Surveys;2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3