A performance analysis framework for identifying potential benefits in GPGPU applications

Author:

Sim Jaewoong1,Dasgupta Aniruddha2,Kim Hyesoon1,Vuduc Richard1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA, USA

2. Advanced Micro Devices, Austin, TX, USA

Abstract

Tuning code for GPGPU and other emerging many-core platforms is a challenge because few models or tools can precisely pinpoint the root cause of performance bottlenecks. In this paper, we present a performance analysis framework that can help shed light on such bottlenecks for GPGPU applications. Although a handful of GPGPU profiling tools exist, most of the traditional tools, unfortunately, simply provide programmers with a variety of measurements and metrics obtained by running applications, and it is often difficult to map these metrics to understand the root causes of slowdowns, much less decide what next optimization step to take to alleviate the bottleneck. In our approach, we first develop an analytical performance model that can precisely predict performance and aims to provide programmer-interpretable metrics. Then, we apply static and dynamic profiling to instantiate our performance model for a particular input code and show how the model can predict the potential performance benefits. We demonstrate our framework on a suite of micro-benchmarks as well as a variety of computations extracted from real codes.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3