Robust Regression via Heuristic Corruption Thresholding and Its Adaptive Estimation Variation

Author:

Zhang Xuchao1ORCID,Lei Shuo1,Zhao Liang2,Boedihardjo Arnold P.3,Lu Chang-Tien1

Affiliation:

1. Virginia Tech, Falls Church, VA

2. George Mason University, Fairfax, VA

3. U. S. Army Corps of Engineers, Alexandria, VA

Abstract

The presence of data noise and corruptions has recently invoked increasing attention on robust least-squares regression ( RLSR ), which addresses this fundamental problem that learns reliable regression coefficients when response variables can be arbitrarily corrupted. Until now, the following important challenges could not be handled concurrently: (1) rigorous recovery guarantee of regression coefficients, (2) difficulty in estimating the corruption ratio parameter, and (3) scaling to massive datasets. This article proposes a novel Robust regression algorithm via Heuristic Corruption Thresholding ( RHCT ) that concurrently addresses all the above challenges. Specifically, the algorithm alternately optimizes the regression coefficients and estimates the optimal uncorrupted set via heuristic thresholding without a pre-defined corruption ratio parameter until its convergence. Moreover, to improve the efficiency of corruption estimation in large-scale data, a Robust regression algorithm via Adaptive Corruption Thresholding ( RACT ) is proposed to determine the size of the uncorrupted set in a novel adaptive search method without iterating data samples exhaustively. In addition, we prove that our algorithms benefit from strong guarantees analogous to those of state-of-the-art methods in terms of convergence rates and recovery guarantees. Extensive experiments demonstrate that the effectiveness of our new methods is superior to that of existing methods in the recovery of both regression coefficients and uncorrupted sets, with very competitive efficiency.

Funder

U. S. Military Research Laboratory and the U. S. Military Research Office

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online and Distributed Robust Regressions with Extremely Noisy Labels;ACM Transactions on Knowledge Discovery from Data;2022-06-30

2. Robust Multi-target Regression for Correlated Data Corruption;2020 IEEE International Conference on Data Mining (ICDM);2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3