1. Martín Abadi , Ashish Agarwal , Paul Barham , Eugene Brevdo , Zhifeng Chen , Craig Citro , Greg S. Corrado , Andy Davis , Jeffrey Dean , Matthieu Devin , Sanjay Ghemawat , Ian Goodfellow , Andrew Harp , Geoffrey Irving , Michael Isard , Yangqing Jia , Rafal Jozefowicz , Lukasz Kaiser , Manjunath Kudlur , Josh Levenberg , Dan Mane , Rajat Monga , Sherry Moore , Derek Murray , Chris Olah , Mike Schuster , Jonathon Shlens , Benoit Steiner , Ilya Sutskever , Kunal Talwar , Paul Tucker , Vincent Vanhoucke , Vijay Vasudevan , Fernanda Viegas , Oriol Vinyals , Pete Warden , Martin Wattenberg , Martin Wicke , Yuan Yu , and Xiaoqiang Zheng . 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467v2 (March 2016 ), 19. http://arxiv.org/abs/1603.04467 arXiv:1603.04467. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467v2 (March 2016), 19. http://arxiv.org/abs/1603.04467 arXiv:1603.04467.
2. Kwangjun Ahn Prateek Jain Ziwei Ji Satyen Kale Praneeth Netrapalli and Gil I. Shamir. 2022. Reproducibility in Optimization: Theoretical Framework and Limits. (2022) 1–51. http://arxiv.org/abs/2202.04598 arXiv:2202.04598. Kwangjun Ahn Prateek Jain Ziwei Ji Satyen Kale Praneeth Netrapalli and Gil I. Shamir. 2022. Reproducibility in Optimization: Theoretical Framework and Limits. (2022) 1–51. http://arxiv.org/abs/2202.04598 arXiv:2202.04598.
3. Ethem Alpaydin . 1999. Combined 5 × 2 cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Comput. 11, 9 (Nov . 1999 ), 1885–1892. https://doi.org/10.1162/089976699300016007 Publisher : MIT Press Place : Cambridge, MA, USA. 10.1162/089976699300016007 Ethem Alpaydin. 1999. Combined 5 × 2 cv F Test for Comparing Supervised Classification Learning Algorithms. Neural Comput. 11, 9 (Nov. 1999), 1885–1892. https://doi.org/10.1162/089976699300016007 Publisher: MIT Press Place: Cambridge, MA, USA.
4. Do We Train on Test Data? Purging CIFAR of Near-Duplicates
5. Alessio Benavoli , Giorgio Corani , and Francesca Mangili . 2016. Should We Really Use Post-Hoc Tests Based on Mean-Ranks?Journal of Machine Learning Research 17, 5 ( 2016 ), 1–10. http://jmlr.org/papers/v17/benavoli16a.html Alessio Benavoli, Giorgio Corani, and Francesca Mangili. 2016. Should We Really Use Post-Hoc Tests Based on Mean-Ranks?Journal of Machine Learning Research 17, 5 (2016), 1–10. http://jmlr.org/papers/v17/benavoli16a.html