Affiliation:
1. Dalian Maritime University, Dalian, China
2. DISI, University of Trento, Trento, Italy
Abstract
In this article, we propose a framework for crowd behavior prediction in complicated scenarios. The fundamental framework is designed using the standard encoder-decoder scheme, which is built upon the long short-term memory module to capture the temporal evolution of crowd behaviors. To model interactions among humans and environments, we embed both the social and the physical attention mechanisms into the long short-term memory. The social attention component can model the interactions among different pedestrians, whereas the physical attention component helps to understand the spatial configurations of the scene. Since pedestrians’ behaviors demonstrate multi-modal properties, we use the generative model to produce multiple acceptable future paths. The proposed framework not only predicts an individual’s trajectory accurately but also forecasts the ongoing group behaviors by leveraging on the coherent filtering approach. Experiments are carried out on the standard crowd benchmarks (namely, the ETH, the UCY, the CUHK crowd, and the CrowdFlow datasets), which demonstrate that the proposed framework is effective in forecasting crowd behaviors in complex scenarios.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Liaoning Collaborative Fund
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献