"Identifying novel privacy issues of online users on social media platforms" by Ghazaleh Beigi and Huan Liu with Martin Vesely as coordinator

Author:

Beigi Ghazaleh1,Liu Huan1

Affiliation:

1. Arizona State University

Abstract

Online users generate tremendous amounts of data. To better serve users, it is required to share the user-related data with advertisers and application developers. Socia media user-related data might make users susceptible to unintended user privacy breach. To encourage data sharing and mitigate user privacy concerns, a number of anonymization and de-anonymization algorithms have been developed to help protect privacy of users. This article introduces our recent research on online users privacy in social media. In particular, we review an approach to identifying novel privacy issues via an adversarial attack specialized for social media data. Our work sheds light on the study of new privacy risks in social media data arising from the innate heterogeneity of user-generated data.

Publisher

Association for Computing Machinery (ACM)

Reference15 articles.

1. Abawajy J. H. Ninggal M. I. H. and Herawan T. 2016. Privacy preserving social network data publication. IEEE communications surveys & tutorials 18 3 1974--1997. Abawajy J. H. Ninggal M. I. H. and Herawan T. 2016. Privacy preserving social network data publication. IEEE communications surveys & tutorials 18 3 1974--1997.

2. Wherefore art thou r3579x?

3. Beigi G. 2018. Social media and user privacy. arXiv preprint arXiv:1806.09786. Beigi G. 2018. Social media and user privacy. arXiv preprint arXiv:1806.09786.

4. Beigi G. and Liu H. 2018a. Privacy in social media: Identification mitigation and applications. arXiv preprint arXiv:1808.02191. Beigi G. and Liu H. 2018a. Privacy in social media: Identification mitigation and applications. arXiv preprint arXiv:1808.02191.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. User Privacy in Recommender Systems;Lecture Notes in Computer Science;2023

2. Characterizing and Understanding Development of Social Computing Through DBLP: A Data-Driven Analysis;Journal of Social Computing;2022-12

3. “Way back then”: A Data-driven View of 25+ years of Web Evolution;Proceedings of the ACM Web Conference 2022;2022-04-25

4. The ARTICONF approach to decentralized car-sharing;Blockchain: Research and Applications;2021-09

5. From likes to love: trust catalysing the digital romantic journey;Global Knowledge, Memory and Communication;2020-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3