1. Daniel Arndt , Wolfgang Bangerth , Maximilian Bergbauer , Marco Feder , Marc Fehling , Johannes Heinz , Timo Heister , Luca Heltai , Martin Kronbichler , Matthias Maier , Peter Munch , Jean-Paul Pelteret , Bruno Turcksin , David Wells , and Stefano Zampini . 2023 , accepted for publication. The deal . II Library , Version 9.5. Journal of Numerical Mathematics ( 2023 , accepted for publication). https://dealii.org/deal95-preprint.pdf Daniel Arndt, Wolfgang Bangerth, Maximilian Bergbauer, Marco Feder, Marc Fehling, Johannes Heinz, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Peter Munch, Jean-Paul Pelteret, Bruno Turcksin, David Wells, and Stefano Zampini. 2023, accepted for publication. The deal.II Library, Version 9.5. Journal of Numerical Mathematics (2023, accepted for publication). https://dealii.org/deal95-preprint.pdf
2. Machine Learning for Fluid Mechanics
3. Physics-informed neural networks for inverse problems in nano-optics and metamaterials
4. Model Order Reduction with Neural Networks: Application to Laminar and Turbulent Flows
5. Viktor Grimm Alexander Heinlein and Axel Klawonn. 2023. Learning the solution operator of two-dimensional incompressible Navier-Stokes equations using physics-aware convolutional neural networks. arxiv:2308.02137 [math.NA] Viktor Grimm Alexander Heinlein and Axel Klawonn. 2023. Learning the solution operator of two-dimensional incompressible Navier-Stokes equations using physics-aware convolutional neural networks. arxiv:2308.02137 [math.NA]