Uncertain Graph Processing through Representative Instances

Author:

Parchas Panos1,Gullo Francesco2,Papadias Dimitris1,Bonchi Francesco2

Affiliation:

1. Hong Kong University of Science and Technology

2. Yahoo Labs, Barcelona

Abstract

Data in several applications can be represented as an uncertain graph whose edges are labeled with a probability of existence. Exact query processing on uncertain graphs is prohibitive for most applications, as it involves evaluation over an exponential number of instantiations. Thus, typical approaches employ Monte-Carlo sampling, which (i) draws a number of possible graphs (samples), (ii) evaluates the query on each of them, and (iii) aggregates the individual answers to generate the final result. However, this approach can also be extremely time consuming for large uncertain graphs commonly found in practice. To facilitate efficiency, we study the problem of extracting a single representative instance from an uncertain graph. Conventional processing techniques can then be applied on this representative to closely approximate the result on the original graph. In order to maintain data utility, the representative instance should preserve structural characteristics of the uncertain graph. We start with representatives that capture the expected vertex degrees, as this is a fundamental property of the graph topology. We then generalize the notion of vertex degree to the concept of n -clique cardinality, that is, the number of cliques of size n that contain a vertex. For the first problem, we propose two methods: Average Degree Rewiring (ADR), which is based on random edge rewiring, and Approximate B-Matching (ABM), which applies graph matching techniques. For the second problem, we develop a greedy approach and a game-theoretic framework. We experimentally demonstrate, with real uncertain graphs, that indeed the representative instances can be used to answer, efficiently and accurately, queries based on several metrics such as shortest path distance, clustering coefficient, and betweenness centrality.

Funder

GRF

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference59 articles.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generic network sparsification via degree- and subgraph-based edge sampling;Information Sciences;2024-09

2. Network Sparsification via Degree- and Subgraph-based Edge Sampling;2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM);2022-11-10

3. An Uncertain Graph Privacy Preserving Scheme Based on Node Similarity in Social Networks;2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS);2022-10

4. Sage;Proceedings of the VLDB Endowment;2022-09

5. A survey on mining and analysis of uncertain graphs;Knowledge and Information Systems;2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3