Affiliation:
1. University of Memphis, Norriswood Ave, Memphis, TN
Abstract
The classic TQBF problem is to determine who has a winning strategy in a game played on a given conjunctive normal form formula (CNF), where the two players alternate turns picking truth values for the variables in a given order, and the winner is determined by whether the CNF gets satisfied. We study variants of this game in which the variables may be played in any order, and each turn consists of picking a remaining variable and a truth value for it.
For the version where the set of variables is partitioned into two halves and each player may only pick variables from his or her half, we prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for unbounded-width CNFs (Schaefer, STOC 1976). For the general unordered version (where each variable can be picked by either player), we also prove that the problem is PSPACE-complete for 5-CNFs and in P for 2-CNFs. Previously, it was known to be PSPACE-complete for 6-CNFs (Ahlroth and Orponen, MFCS 2012) and PSPACE-complete for positive 11-CNFs (Schaefer, STOC 1976).
Publisher
Association for Computing Machinery (ACM)
Subject
Computational Theory and Mathematics,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献