Using Cache or Credit for Parallel Ranking and Selection

Author:

Avci Harun1ORCID,Nelson Barry L.1ORCID,Song Eunhye2ORCID,Wächter Andreas1ORCID

Affiliation:

1. Northwestern University, USA

2. Georgia Institute of Technology, USA

Abstract

In this article, we focus on ranking and selection procedures that sequentially allocate replications to systems by applying some acquisition function. We propose an acquisition function, called gCEI, which exploits the gradient of the complete expected improvement with respect to the number of replications. We prove that the gCEI procedure, which adopts gCEI as the acquisition function in a serial computing environment, achieves the asymptotically optimal static replication allocation of Glynn and Juneja in the limit under a normality assumption. We also propose two procedures, called caching and credit, that extend any acquisition-function-based procedure in a serial environment into both synchronous and asynchronous parallel environments. While allocating replications to systems, both procedures use persistence forecasts for the unavailable outputs of the currently running replications, but differ in usage of the available outputs. We prove that, under certain assumptions, the caching procedure achieves the same asymptotic allocation as in the serial environment. A similar result holds for the credit procedure using gCEI as the acquisition function. In terms of efficiency and effectiveness, the credit procedure empirically performs as well as the caching procedure, despite not carefully controlling the output history as the caching procedure does, and is faster than the serial version without any number-of-replications penalty due to using persistence forecasts. Both procedures are designed to solve small-to-medium-sized problems on computers with a modest number of processors, such as laptops and desktops as opposed to high-performance clusters, and are superior to state-of-the-art parallel procedures in this setting.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,Modeling and Simulation

Reference31 articles.

1. Harun Avci, Barry L. Nelson, and Andreas Wächter. 2021. Getting to “Rate-optimal” in ranking & selection. In Proceedings of the Winter Simulation Conference. Retrieved from https://www.informs--sim.org/wsc21papers/236.pdf

2. Jürgen Branke, Stephen E. Chick, and Christian Schmidt. 2005. New developments in ranking and selection: An empirical comparison of the three main approaches. In Proceedings of the Winter Simulation Conference. 708–717.

3. Selecting a Selection Procedure

4. E. Jack Chen. 2005. Using parallel and distributed computing to increase the capability of selection procedures. In Proceedings of the Winter Simulation Conference. 723–731.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rebooting simulation;IISE Transactions;2023-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3