Dynamically Adapting Page Migration Policies Based on Applications’ Memory Access Behaviors

Author:

Adavally Shashank1,Islam Mahzabeen1,Kavi Krishna1

Affiliation:

1. University of North Texas, Denton, TX

Abstract

There have been numerous studies on heterogeneous memory systems comprised of faster DRAM (e.g., 3D stacked HBM or HMC) and slower non-volatile memories (e.g., PCM, STT-RAM). However, most of these studies focused on static policies for managing data placement and migration among the different memory devices. These policies are based on the average behavior across a range of applications. Results show that these techniques do not always result in higher performance when compared to systems that do not migrate data across the devices: some applications show performance gains, but other applications show performance losses. It is possible to utilize offline analyses to identify which applications benefit from page migration (migration friendly) and use page migration only with those applications. However, we observed that several applications exhibit both migration friendly and migration unfriendly behaviors during different phases of execution supporting a need for adaptive page migration techniques. We introduce and evaluate techniques that dynamically adapt to the behavior of applications and either reduce or increase migrations, or even halt migrations. Our adaptive techniques show performance gains for both migration friendly (on average of 81% over no migrations) and unfriendly workloads (by an average of 3%): it should be remembered that previous migration techniques resulted in performance losses for unfriendly workloads.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference38 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Page Migration on Heterogeneous Memory by Using Transformer;International Journal of Parallel Programming;2024-09-12

2. HMComp: Extending Near-Memory Capacity using Compression in Hybrid Memory;Proceedings of the 38th ACM International Conference on Supercomputing;2024-05-30

3. Look before you leap: An Access-based Prudent Page Migration for Hybrid Memories;2023 IFIP/IEEE 31st International Conference on Very Large Scale Integration (VLSI-SoC);2023-10-16

4. TransMigrator: A Transformer-Based Predictive Page Migration Mechanism for Heterogeneous Memory;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3