Affiliation:
1. University of North Texas, Denton, TX
Abstract
There have been numerous studies on heterogeneous memory systems comprised of faster DRAM (e.g., 3D stacked HBM or HMC) and slower non-volatile memories (e.g., PCM, STT-RAM). However, most of these studies focused on static policies for managing data placement and migration among the different memory devices. These policies are based on the average behavior across a range of applications. Results show that these techniques do not always result in higher performance when compared to systems that do not migrate data across the devices: some applications show performance gains, but other applications show performance losses. It is possible to utilize offline analyses to identify which applications benefit from page migration (migration friendly) and use page migration only with those applications. However, we observed that several applications exhibit both migration friendly and migration unfriendly behaviors during different phases of execution supporting a need for adaptive page migration techniques. We introduce and evaluate techniques that dynamically adapt to the behavior of applications and either reduce or increase migrations, or even halt migrations. Our adaptive techniques show performance gains for both migration friendly (on average of 81% over no migrations) and unfriendly workloads (by an average of 3%): it should be remembered that previous migration techniques resulted in performance losses for unfriendly workloads.
Funder
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献