Virtual execution platforms for mixed-time-criticality systems

Author:

Goossens Kees1,Azevedo Arnaldo2,Chandrasekar Karthik2,Gomony Manil Dev1,Goossens Sven1,Koedam Martijn1,Li Yonghui1,Mirzoyan Davit2,Molnos Anca2,Nejad Ashkan Beyranvand2,Nelson Andrew2,Sinha Shubhendu1

Affiliation:

1. Eindhoven University of Technology

2. Delft University of Technology

Abstract

Systems on chip (SOC) contain multiple concurrent applications with different time criticality (firm, soft, non real-time). As a result, they are often developed by different teams or companies, with different models of computation (MOC) such as dataflow, Kahn process networks (KPN), or time-triggered (TT). SOC functionality and (real-time) performance is verified after all applications have been integrated. In this paper we propose the CompSOC platform and design flows that offers a virtual execution platform per application, to allow independent design, verification, and execution . We introduce the composability and predictability concepts, why they help, and how they are implemented in the different resources of the CompSOC architecture. We define a design flow that allows real-time cyclo-static dataflow (CSDF) applications to be automatically mapped, verified, and executed. Mapping and analysis of KPN and TT applications is not automated but they do run composably in their allocated virtual platforms. Although most of the techniques used here have been published in isolation, this paper is the first comprehensive overview of the CompSOC approach. Moreover, three new case studies illustrate all claimed benefits: 1) An example firm-real-time CSDF H.263 decoder is automatically mapped and verified. 2) Applications with different models of computation (CSDF and TT) run composably. 3) Adaptive soft-real-time applications execute composably and can hence be verified independently by simulation.

Funder

Seventh Framework Programme

NL STW 10346 NEST

Catrene CA104 Cobra

Publisher

Association for Computing Machinery (ACM)

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3