Multi-core composability in the face of memory-bus contention

Author:

Behnam Moris1,Inam Rafia1,Nolte Thomas1,Sjödin Mikael1

Affiliation:

1. Mälardalen University, Västerås, Sweden

Abstract

In this paper we describe the problem of achieving composability of independently developed real-time subsystems to be executed on a multi-core platform, and we provide a solution to tackle it. We evaluate existing work for achieving real-time predictability on multi-cores and illustrate their lack with respect to composability. To address composability we present a multi-resource server-based scheduling technique to provide predictable performance when composing multiple subsystems on a shared multi-core platform. To achieve composability on multi-core platforms, we propose to add memory bandwidth as an additional server resource. Tasks within our multi-resource servers are guaranteed both CPU- and memory bandwidth; thus the performance of a server will become independent of resource usage by tasks in other servers. We are currently implementing multi-resource servers for the Enea OSE operating system for a Freescale P4080 8-core processor, to be tested with software for a 3G-basestation.

Publisher

Association for Computing Machinery (ACM)

Subject

Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3