Affiliation:
1. Scuola Superiore Sant’Anna, Pisa, Italy
2. Scuola Superiore Sant’Anna and CRIStAL (Univ. Lille, CNRS, Centrale Lille, UMR 9189), Lille, France
Abstract
AMBA AXI is a popular bus protocol that is widely adopted as the medium to exchange data in field-programmable gate array system-on-chips (FPGA SoCs). The AXI protocol does not specify how conflicting transactions are arbitrated and hence the design of bus arbiters is left to the vendors that adopt AXI. Typically, a round-robin arbitration is implemented to ensure a fair access to the bus by the master nodes, as for the popular SoCs by Xilinx.
This paper addresses a critical issue that can arise when adopting the AXI protocol under round-robin arbitration; specifically, in the presence of bus transactions with heterogeneous burst sizes. First, it is shown that a completely unfair bandwidth distribution can be achieved under some configurations, making possible to arbitrarily decrease the bus bandwidth of a target master node. This issue poses serious performance, safety, and security concerns. Second, a low-latency (one clock cycle) module named
AXI burst equalizer
(ABE) is proposed to restore fairness. Our investigations and proposals are supported by implementations and tests upon three modern SoCs. Experimental results are reported to confirm the existence of the issue and assess the effectiveness of the ABE with bus traffic generators and hardware accelerators from the Xilinx’s IP library.
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Software
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献