ASTROLABE

Author:

Nouri Ayoub1,Bozga Marius2,Molnos Anca3,Legay Axel4,Bensalem Saddek1

Affiliation:

1. Université Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

2. CNRS, VERIMAG, F-38000 Grenoble, France

3. CEA/LETI, Grenoble, France

4. INRIA/IRISA, Rennes, France

Abstract

Building abstract system-level models that faithfully capture performance and functional behavior for embedded systems design is challenging. Unlike functional aspects, performance details are rarely available during the early design phases, and no clear method is known to characterize them. Moreover, once such models are built, they are inherently complex as they mix software models, hardware constraints, and environment abstractions. Their analysis by using traditional performance evaluation methods is reaching the limit. In this article, we present a systematic approach for building stochastic abstract performance models using statistical inference and model calibration, and we propose statistical model checking as a scalable performance evaluation technique for them.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Digital Twin Architecture with Formal Analysis Capabilities for Learning-Enabled Autonomous Systems;Modelling and Simulation for Autonomous Systems;2023

2. Experimental Evaluation of Statistical Model Checking Methods for Probabilistic Timing Analysis of Multiprocessor Systems;2021 24th Euromicro Conference on Digital System Design (DSD);2021-09

3. Quantitative variability modelling and analysis;International Journal on Software Tools for Technology Transfer;2019-09-20

4. Performance Evaluation of the NDN Data Plane Using Statistical Model Checking;Automated Technology for Verification and Analysis;2019

5. Model-based design of IoT systems with the BIP component framework;Software: Practice and Experience;2018-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3