Empirical hardness models

Author:

Leyton-Brown Kevin1,Nudelman Eugene2,Shoham Yoav2

Affiliation:

1. University of British Columbia, Vancouver, British Columbia, Canada

2. Stanford University, Stanford, California

Abstract

Is it possible to predict how long an algorithm will take to solve a previously-unseen instance of an NP-complete problem? If so, what uses can be found for models that make such predictions? This article provides answers to these questions and evaluates the answers experimentally. We propose the use of supervised machine learning to build models that predict an algorithm's runtime given a problem instance. We discuss the construction of these models and describe techniques for interpreting them to gain understanding of the characteristics that cause instances to be hard or easy. We also present two applications of our models: building algorithm portfolios that outperform their constituent algorithms, and generating test distributions that emphasize hard problems. We demonstrate the effectiveness of our techniques in a case study of the combinatorial auction winner determination problem. Our experimental results show that we can build very accurate models of an algorithm's running time, interpret our models, build an algorithm portfolio that strongly outperforms the best single algorithm, and tune a standard benchmark suite to generate much harder problem instances.

Funder

Division of Information and Intelligent Systems

Defense Advanced Research Projects Agency

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Which algorithm to select in sports timetabling?;European Journal of Operational Research;2024-10

2. How Much Data Is Sufficient to Learn High-Performing Algorithms?;Journal of the ACM;2024-07-29

3. Learning-based metareasoning for decision-making in multi-agent pursuit-evasion games;Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications VI;2024-06-07

4. Learn to optimize—a brief overview;National Science Review;2024-04-02

5. Learning to branch: Generalization guarantees and limits of data-independent discretization;Journal of the ACM;2023-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3