Improving Energy Efficiency in Wireless Network-on-Chip Architectures

Author:

Catania Vincenzo1,Mineo Andrea1,Monteleone Salvatore1,Palesi Maurizio1,Patti Davide1ORCID

Affiliation:

1. University of Catania, Catania, Italy

Abstract

Wireless Network-on-Chip (WiNoC) represents a promising emerging communication technology for addressing the scalability limitations of future manycore architectures. In a WiNoC, high-latency and power-hungry long-range multi-hop communications can be realized by performance- and energy-efficient single-hop wireless communications. However, the energy contribution of such wireless communication accounts for a significant fraction of the overall communication energy budget. This article presents a novel energy managing technique for WiNoC architectures aimed at improving the energy efficiency of the main elements of the wireless infrastructure, namely, radio-hubs. The rationale behind the proposed technique is based on selectively turning off, for the appropriate number of cycles, all the radio-hubs that are not involved in the current wireless communication. The proposed energy managing technique is assessed on several network configurations under different traffic scenarios both synthetic and extracted from the execution of real applications. The obtained results show that the application of the proposed technique allows up to 25% total communication energy saving without any impact on performance and with a negligible impact on the silicon area of the radio-hub.

Funder

Italian Ministry of Education, University and Research on the “PAC” funding called the “SERVIFY (SERVIce FirstlY)” project

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3