“In-Network Ensemble”: Deep Ensemble Learning with Diversified Knowledge Distillation

Author:

Li Xingjian1,Xiong Haoyi2,Chen Zeyu3,Huan Jun2,Xu Cheng-Zhong4,Dou Dejing2

Affiliation:

1. Baidu Inc., Beijing, China and University of Macau, Taipa, Macau, China

2. Baidu Inc., Beijing, China

3. Baidu Inc., Beijing, Guandong, China

4. University of Macau, Taipa, Macau, China

Abstract

Ensemble learning is a widely used technique to train deep convolutional neural networks (CNNs) for improved robustness and accuracy. While existing algorithms usually first train multiple diversified networks and then assemble these networks as an aggregated classifier, we propose a novel learning paradigm, namely, “In-Network Ensemble” ( INE ) that incorporates the diversity of multiple models through training a SINGLE deep neural network. Specifically, INE segments the outputs of the CNN into multiple independent classifiers, where each classifier is further fine-tuned with better accuracy through a so-called diversified knowledge distillation process . We then aggregate the fine-tuned independent classifiers using an Averaging-and-Softmax operator to obtain the final ensemble classifier. Note that, in the supervised learning settings, INE starts the CNN training from random, while, under the transfer learning settings, it also could start with a pre-trained model to incorporate the knowledge learned from additional datasets. Extensive experiments have been done using eight large-scale real-world datasets, including CIFAR, ImageNet, and Stanford Cars, among others, as well as common deep network architectures such as VGG, ResNet, and Wide ResNet. We have evaluated the method under two tasks: supervised learning and transfer learning. The results show that INE outperforms the state-of-the-art algorithms for deep ensemble learning with improved accuracy.

Funder

National Key Research and Development Program of China

Science and Technology Development Fund of Macau SAR

GuangDong Basic and Applied Basic Research Foundation

Key-area Research and Development Program of Guangdong Province

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference51 articles.

1. Consistency of random forests and other averaging classifiers;Biau Gérard;J. Mach. Learn. Res. 9,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3