Data-flow Reversal and Garbage Collection

Author:

Hascoët Laurent1

Affiliation:

1. INRIA Sophia-Antipolis, France

Abstract

Data-flow reversal is at the heart of source-transformation reverse algorithmic differentiation (reverse ST-AD), arguably the most efficient way to obtain gradients of numerical models. However, when the model implementation language uses garbage collection (GC), for instance in Java or Python, the notion of address that is needed for data-flow reversal disappears. Moreover, GC is asynchronous and does not appear explicitly in the source. This paper presents an extension to the model of reverse ST-AD suitable for a language with GC. The approach is validated on a Java implementation of a simple Navier-Stokes solver. Performance is compared with existing AD tools ADOL-C and Tapenade on an equivalent implementation in C and Fortran.

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference25 articles.

1. Automatic Differentiation in Machine Learning: a survey;Baydin A.;Journal of Machine Learning Research,2018

2. Martin Berz , Christian Bischof , George Corliss , and Andreas Griewank (Eds.). 1996 . Computational Differentiation: Techniques, Applications and Tools . SIAM , Philadelphia, PA . Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank (Eds.). 1996. Computational Differentiation: Techniques, Applications and Tools. SIAM, Philadelphia, PA.

3. Christian H. Bischof H. Martin Bücker Paul D. Hovland Uwe Naumann and Jean Utke (Eds.). 2008. Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering Vol.  64. Springer Berlin. https://doi.org/10.1007/978-3-540-68942-3 10.1007/978-3-540-68942-3

4. Christian H. Bischof H. Martin Bücker Paul D. Hovland Uwe Naumann and Jean Utke (Eds.). 2008. Advances in Automatic Differentiation. Lecture Notes in Computational Science and Engineering Vol.  64. Springer Berlin. https://doi.org/10.1007/978-3-540-68942-3

5. James Bradbury Roy Frostig Peter Hawkins Matthew James Johnson Chris Leary Dougal Maclaurin George Necula Adam Paszke Jake VanderPlas Skye Wanderman-Milne and Qiao Zhang. 2018. JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax James Bradbury Roy Frostig Peter Hawkins Matthew James Johnson Chris Leary Dougal Maclaurin George Necula Adam Paszke Jake VanderPlas Skye Wanderman-Milne and Qiao Zhang. 2018. JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3