Generalized Points-to Graphs

Author:

Gharat Pritam M.1,Khedker Uday P.1,Mycroft Alan2ORCID

Affiliation:

1. Indian Institute of Technology Bombay, India

2. University of Cambridge, UK

Abstract

Computing precise (fully flow- and context-sensitive) and exhaustive (as against demand-driven) points-to information is known to be expensive. Top-down approaches require repeated analysis of a procedure for separate contexts. Bottom-up approaches need to model unknown pointees accessed indirectly through pointers that may be defined in the callers and hence do not scale while preserving precision. Therefore, most approaches to precise points-to analysis begin with a scalable but imprecise method and then seek to increase its precision. We take the opposite approach in that we begin with a precise method and increase its scalability. In a nutshell, we create naive but possibly non-scalable procedure summaries and then use novel optimizations to compact them while retaining their soundness and precision. For this purpose, we propose a novel abstraction called the generalized points-to graph (GPG), which views points-to relations as memory updates and generalizes them using the counts of indirection levels leaving the unknown pointees implicit. This allows us to construct GPGs as compact representations of bottom-up procedure summaries in terms of memory updates and control flow between them. Their compactness is ensured by strength reduction (which reduces the indirection levels), control flow minimization (which removes control flow edges while preserving soundness and precision), and call inlining (which enhances the opportunities of these optimizations). The effectiveness of GPGs lies in the fact that they discard as much control flow as possible without losing precision. This is the reason GPGs are very small even for main procedures that contain the effect of the entire program. This allows our implementation to scale to 158 kLoC for C programs. At a more general level, GPGs provide a convenient abstraction to represent and transform memory in the presence of pointers. Future investigations can try to combine it with other abstractions for static analyses that can benefit from points-to information.

Funder

TCS Research Fellowship

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference47 articles.

1. Analysis of programs for parallel processing;Bernstein A. J.;IEEE Trans. Elec. Comp. EC-15,1996

2. A novel analysis space for pointer analysis and its application for bug finding. Sci;Buss Marcio;Comput. Program.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3