Scarcity of Labels in Non-Stationary Data Streams: A Survey

Author:

Fahy Conor1ORCID,Yang Shengxiang1,Gongora Mario1

Affiliation:

1. Institute of ArtificialIntelligence, De Montfort University, Leicester, UK

Abstract

In a dynamic stream there is an assumption that the underlying process generating the stream is non-stationary and that concepts within the stream will drift and change as the stream progresses. Concepts learned by a classification model are prone to change and non-adaptive models are likely to deteriorate and become ineffective over time. The challenge of recognising and reacting to change in a stream is compounded by the scarcity of labels problem. This refers to the very realistic situation in which the true class label of an incoming point is not immediately available (or might never be available) or in situations where manually annotating data points are prohibitively expensive. In a high-velocity stream, it is perhaps impossible to manually label every incoming point and pursue a fully supervised approach. In this article, we formally describe the types of change, which can occur in a data-stream and then catalogue the methods for dealing with change when there is limited access to labels. We present an overview of the most influential ideas in the field along with recent advancements and we highlight trends, research gaps, and future research directions.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3