1. Skreta , M. , Arbabi , A. , Wang , J. , & Brudno , M. ( 2020 , April). Training without training data: Improving the generalizability of automated medical abbreviation disambiguation . In Machine Learning for Health Workshop (pp. 233-245) . PMLR.. Skreta, M., Arbabi, A., Wang, J., & Brudno, M. (2020, April). Training without training data: Improving the generalizability of automated medical abbreviation disambiguation. In Machine Learning for Health Workshop (pp. 233-245). PMLR..
2. Holper , S. , Barmanray , R. , Colman , B. , Yates , C. J. , Liew , D. , & Smallwood , D. ( 2020 ). Ambiguous medical abbreviation study: challenges and opportunities. Internal medicine journal, 50(9), 1073-1078 .. Holper, S., Barmanray, R., Colman, B., Yates, C. J., Liew, D., & Smallwood, D. (2020). Ambiguous medical abbreviation study: challenges and opportunities. Internal medicine journal, 50(9), 1073-1078..
3. A convolutional route to abbreviation disambiguation in clinical text
4. A sense inventory for clinical abbreviations and acronyms created using clinical notes and medical dictionary resources
5. Zweigenbaum , P. , Deléger , L. , Lavergne , T. , Névéol , A. , & Bodnari , A. ( 2013 ). A Supervised Abbreviation Resolution System for Medical Text . In CLEF (Working Notes). Zweigenbaum, P., Deléger, L., Lavergne, T., Névéol, A., & Bodnari, A. (2013). A Supervised Abbreviation Resolution System for Medical Text. In CLEF (Working Notes).